MTH 201 Multivariable calculus and differential equations Homework 1 Vectors, dot product, and cross product

Notation: \mathbf{u}, \mathbf{v} , and \mathbf{w} donote vectors in \mathbb{R}^3 , unless specified.

- 1. Let $\mathbf{a} = \langle a_1, a_2 \rangle$ be a vector in \mathbb{R}^2 . Compute $2\mathbf{a}, \frac{1}{2}\mathbf{a}$, and $-3\mathbf{a}$. Graph all four vectors.
- 2. Given a non-zero vector \mathbf{v} , find a unit vector that points in the same direction as \mathbf{v} .
- 3. Determine if vectors in the following sets are parallel
 - (a) $\mathbf{u} = \langle -2, 4, -1 \rangle, \ \mathbf{v} = \langle 6, -12, 3 \rangle$
 - (b) $\mathbf{u} = \langle 2, 5 \rangle, \ \mathbf{v} = \langle 2, 8 \rangle.$
- 4. Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be position vectors of points P_1 and P_2 respectively. Use vector algebra (vector addition and scalar multiplication) to find the midpoint of the line segment joining P_1 and P_2 .
- 5. Let $\mathbf{u} = \langle 6, 3, 2 \rangle$ and $\mathbf{v} = \langle 1, -2, -2 \rangle$ be two vectors.
 - (a) Find the angle between \mathbf{u} and \mathbf{v} .
 - (b) Find $\operatorname{proj}_{\mathbf{v}}\mathbf{u}$ the vector projection of \mathbf{u} onto \mathbf{v} .
- 6. Let \mathbf{u} and \mathbf{v} be two non-zero vectors. Then
 - (a) under what circumstances, the vectors $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} \mathbf{v}$ are orthogonal?
 - (b) show that $|\mathbf{u} + \mathbf{v}|^2 + |\mathbf{u} \mathbf{v}|^2 = 2(|\mathbf{u}|^2 + |\mathbf{v}|^2).$
- 7. Use vectors to prove that the diagonals of a parallelogram bisect each other. (HW)
- 8. Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be non-zero vectors. Then show that the vector $\mathbf{w} = |\mathbf{v}|\mathbf{u} + |\mathbf{u}|\mathbf{v}$ bijects the angle between \mathbf{u} and \mathbf{v} .
- 9. Under what assumption on vectors, we get equality in Cauchy-Schwartz inequality?
- 10. If $\mathbf{u} + \mathbf{v} + \mathbf{w} = \mathbf{0}$, then prove that

$$\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{w} = \mathbf{w} \times \mathbf{u}.$$

11. Suppose $\mathbf{u} \neq 0$,

- (a) If $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, does it follow that $\mathbf{v} = \mathbf{w}$.
- (b) If $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$, does it follow that $\mathbf{v} = \mathbf{w}$.
- (c) If $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$ and $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$, does it follow that $\mathbf{v} = \mathbf{w}$.
- 12. Given three vectors \mathbf{u}, \mathbf{v} , and \mathbf{w} , show that

(a)
$$|\mathbf{u} - \mathbf{v}| \le |\mathbf{u} - \mathbf{w}| + |\mathbf{v} - \mathbf{w}|.$$

- (b) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$.
- (c) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) + \mathbf{v} \times (\mathbf{w} \times \mathbf{u}) + \mathbf{w} \times (\mathbf{u} \times \mathbf{v}) = \mathbf{0}.$

(HW)

MTH 201 Homework 1 (Continued)

- 13. Find volume of the parallelopiped determined by vectors $\mathbf{i} + 2\mathbf{j} \mathbf{k}$, $2\mathbf{i} + 3\mathbf{k}$, and $7\mathbf{j} 4\mathbf{k}$.
- 14. Which of the followings are meaningful? Which are meaningless? Justify your answers. (HW)
 - (a) $\mathbf{u} + (\mathbf{v} \cdot \mathbf{w})$ (b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})$
 - (c) $\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$
 - (d) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$
 - (e) $\mathbf{u} \times (\mathbf{v} \cdot \mathbf{w})$