Multivariable calculus and differential equations
 Homework 1
 Vectors, dot product, and cross product

Notation: \mathbf{u}, \mathbf{v}, and \mathbf{w} donote vectors in \mathbb{R}^{3}, unless specified.

1. Let $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ be a vector in \mathbb{R}^{2}. Compute $2 \mathbf{a}, \frac{1}{2} \mathbf{a}$, and $-3 \mathbf{a}$. Graph all four vectors.
2. Given a non-zero vector \mathbf{v}, find a unit vector that points in the same direction as \mathbf{v}.
3. Determine if vectors in the following sets are parallel
(a) $\mathbf{u}=\langle-2,4,-1\rangle, \mathbf{v}=\langle 6,-12,3\rangle$
(b) $\mathbf{u}=\langle 2,5\rangle, \mathbf{v}=\langle 2,8\rangle$.
4. Let $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be position vectors of points P_{1} and P_{2} respectively. Use vector algebra (vector addition and scalar multiplication) to find the midpoint of the line segment joining P_{1} and P_{2}.
5. Let $\mathbf{u}=\langle 6,3,2\rangle$ and $\mathbf{v}=\langle 1,-2,-2\rangle$ be two vectors.
(a) Find the angle between \mathbf{u} and \mathbf{v}.
(b) Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ - the vector projection of \mathbf{u} onto \mathbf{v}.
6. Let \mathbf{u} and \mathbf{v} be two non-zero vectors. Then
(a) under what circumstances, the vectors $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$ are orthogonal?
(b) show that $|\mathbf{u}+\mathbf{v}|^{2}+|\mathbf{u}-\mathbf{v}|^{2}=2\left(|\mathbf{u}|^{2}+|\mathbf{v}|^{2}\right)$.
7. Use vectors to prove that the diagonals of a parallelogram bisect each other.
8. Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be non-zero vectors. Then show that the vector $\mathbf{w}=|\mathbf{v}| \mathbf{u}+|\mathbf{u}| \mathbf{v}$ bijects the angle between \mathbf{u} and \mathbf{v}.
9. Under what assumption on vectors, we get equality in Cauchy-Schwartz inequality?
10. If $\mathbf{u}+\mathbf{v}+\mathbf{w}=\mathbf{0}$, then prove that

$$
\mathbf{u} \times \mathbf{v}=\mathbf{v} \times \mathbf{w}=\mathbf{w} \times \mathbf{u}
$$

11. Suppose $\mathbf{u} \neq 0$,
(a) If $\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}$, does it follow that $\mathbf{v}=\mathbf{w}$.
(b) If $\mathbf{u} \times \mathbf{v}=\mathbf{u} \times \mathbf{w}$, does it follow that $\mathbf{v}=\mathbf{w}$.
(c) If $\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w}$ and $\mathbf{u} \times \mathbf{v}=\mathbf{u} \times \mathbf{w}$, does it follow that $\mathbf{v}=\mathbf{w}$.
12. Given three vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}, show that
(a) $|\mathbf{u}-\mathbf{v}| \leq|\mathbf{u}-\mathbf{w}|+|\mathbf{v}-\mathbf{w}|$.
(b) $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$.
(c) $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})+\mathbf{v} \times(\mathbf{w} \times \mathbf{u})+\mathbf{w} \times(\mathbf{u} \times \mathbf{v})=\mathbf{0}$.

MTH 201 Homework 1 (Continued)

13. Find volume of the parallelopiped determined by vectors $\mathbf{i}+2 \mathbf{j}-\mathbf{k}, 2 \mathbf{i}+3 \mathbf{k}$, and $7 \mathbf{j}-4 \mathbf{k}$.
14. Which of the followings are meaningful? Which are meaningless? Justify your answers. (HW)
(a) $\mathbf{u}+(\mathbf{v} \cdot \mathbf{w})$
(b) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})$
(c) $\mathbf{u} \cdot(\mathbf{v} \cdot \mathbf{w})$
(d) $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$
(e) $\mathbf{u} \times(\mathbf{v} \cdot \mathbf{w})$
